skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiong, Zuobin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 23, 2026
  2. Free, publicly-accessible full text available November 1, 2026
  3. Free, publicly-accessible full text available August 15, 2026
  4. The quality of the processed products in CNC machining centers is a critical factor in manufacturing equipment. The anomaly detection and predictive maintenance functions are essential for improving efficiency and reducing time and costs. This study aims to strengthen service competitiveness by reducing quality assurance costs and implementing AI-based predictive maintenance services, as well as establishing a predictive maintenance system for CNC manufacturing equipment. The proposed system integrates preventive maintenance, time-based maintenance, and condition-based maintenance strategies. Using continuous learning based on long short-term memory (LSTM), the system enables anomaly detection, failure prediction, cause analysis, root cause identification, remaining useful life (RUL) prediction, and optimal maintenance timing decisions. In addition, this study focuses on roller-cutting devices that are essential in packaging processes, such as food, pharmaceutical, and cosmetic production. When rolling pins are machining with CNC equipment, a sensor system is installed to collect acoustic data, analyze failure patterns, and apply RUL prediction algorithms. The AI-based predictive maintenance system developed ensures the reliability and operational efficiency of CNC equipment, while also laying the foundation for a smart factory monitoring platform, thus enhancing competitiveness in intelligent manufacturing environments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. Free, publicly-accessible full text available August 4, 2026
  6. The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts. 
    more » « less